Community Learning Center Lesson Plan

SWBAT:

- Define and identify right pyramids, cones, and spheres.
- Find surface area and volume of right pyramids, cones, and spheres.
- Given volume or surface area, solve for side length, height, radius, or diameter.
- Find surface area and volume of composite solid geometric figures

Kaplan New GED Test Strategies, Practice, and Review

Steck-Vaughn GED: Test Preparation Student Workbook Mathematical Reasoning
TI-30xs MultiView calculators
GED Mathematics formula sheet: http://www.gedtestingservice.com/uploads/files/0756c16704434ff71e43c8117a5fa738.pdf
Surface area of mixed solids worksheet:
http://cdn.kutasoftware.com/Worksheets/PreAlg/Surface\ Area\ of\ Solids.pdf
Volume of mixed solids worksheet: http://cdn.kutasoftware.com/Worksheets/PreAlg/Volumes\ of\ Solids.pdf
Printable surface area worksheets for various shapes included in the lesson, including composite solids: http://www.mathworksheets4kids.com/surface-area.php
Printable volume worksheets for various shapes included in the lesson, including composite solids: http://www.mathworksheets4kids.com/volume.php

Pre-lesson activities (30 minutes)

1) Review homework and answer questions. Discuss problems from exit ticket that students had trouble with.

Lesson (2 hours plus 10 minute break)
2) Surface area and volume of pyramids, cones, and spheres

Direct students to appropriate formulas and discuss. Demonstrate calculation of volume and surface area with each of the three shapes.
Demonstrate solving for height, radius, or side length when volume or surface area are given (ex. Steck-Vaungh p. 154 \#1-2, 6-7)

Provide time for guided practice. Ask students to discuss and explain thought process in solving the problem.
Suggested resources:
Kaplan p. 391
Steck-Vaughn p. 154-157
Surface area of mixed solids worksheet:
http://cdn.kutasoftware.com/Worksheets/PreAlg/Surface\ Area\ of\ Solids.pdf
Printable surface area worksheets for various shapes included in the lesson
http://www.mathworksheets4kids.com/surface-area.php
Printable volume worksheets for various shapes included in the lesson
http://www.mathworksheets4kids.com/volume.php
3) Surface area and volume of composite solids

Discuss composite solids - provide visual model if possible. Discuss strategy of dividing composite solid into known geometric figures to find volume, and strategy of subtracting overlapping areas to find surface area.
Kaplan p. 397
Steck-Vaughn p. 158-161
Printable surface area worksheets (scroll down for composite solids)
http://www.mathworksheets4kids.com/surface-area.php
Printable volume worksheets (scroll down for composite solids)
http://www.mathworksheets4kids.com/volume.php
4) Geometry review

Have students complete the geometry review in Kaplan p. 400-402, or provide another mixed review of geometry concepts learned. You can choose to approach this as an opportunity for further guided practice or as an assessment where students work independently.

Closure (20 minutes)

- Ask students to recap vocabulary and concepts learned today.
- Assign homework
- Collect work completed on geometry review

ASSESSMENT ACTIVITIES (How will you know that the learners have met the objectives for this lesson?)
Q.1.b. Perform addition, subtraction, multiplication, and division on rational numbers.

- check geometry review.

HOMEWORK

Finish any guided practice not completed during class.

Mathematics Formula Sheet \& Explanation

The 2014 GED ${ }^{\circledR}$ Mathematical Reasoning test contains a formula sheet, which displays formulas relating to geometric measurement and certain algebra concepts. Formulas are provided to testtakers so that they may focus on application, rather than the memorization, of formulas.

Area of a:

square	$\mathrm{A}=s^{2}$
rectangle	$\mathrm{A}=l w$
parallelogram	$\mathrm{A}=b h$
triangle	$\mathrm{A}=\frac{1}{2} b h$
trapezoid	$\mathrm{A}=\frac{1}{2} h\left(b_{1}+b_{2}\right)$
circle	$\mathrm{A}=\pi r^{2}$

Perimeter of a:

square	$\mathrm{P}=4 s$
rectangle	$\mathrm{P}=2 l+2 w$
triangle	$\mathrm{P}=s_{1}+s_{2}+s_{3}$
Circumference of a circle	$\mathrm{C}=2 \pi r \mathrm{ORC}=\pi d ; \pi \approx 3.14$

Surface area and volume of a:

rectangular prism	$\mathrm{SA}=2 l w+2 I h+2 w h$	$\mathrm{~V}=/ w h$
right prism $\mathrm{SA}=p h+2 B$	$\mathrm{~V}=B h$	
cylinder	$\mathrm{SA}=2 \pi r h+2 \pi r^{2}$	$\mathrm{~V}=\pi r^{2} h$
pyramid	$\mathrm{SA}=\frac{1}{2} p s+B$	$\mathrm{~V}=\frac{1}{3} B h$
cone	$\mathrm{SA}=\pi r s+\pi r^{2}$	$\mathrm{~V}=\frac{1}{3} \pi r^{2} h$
sphere	$\mathrm{SA}=4 \pi r^{2}$	$\mathrm{~V}=\frac{4}{3} \pi r^{3}$
Data	$(p=$ perimeter of base with area $B ; \pi \approx 3.14)$	
mean	mean is equal to the total of the values of a data set, divided by the number of elements in the data set	
median	median is the middle value in an odd number of ordered values of a data set, or the mean of the two middle values in an even number of ordered values in a data set	

Algebra

slope of a line	$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
slope-intercept form of the equation of a line	$y=m x+b$
point-slope form of the equation of a line	$y-y_{1}=m\left(x-x_{1}\right)$
standard form of a quadratic equation	$y=a x^{2}+b x+c$
quadratic formula	$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
Pythagorean theorem	$a^{2}+b^{2}=c^{2}$
simple interest	$I=P r t$ $I=$ interest, $P=$ principal, $r=$ rate, $t=$ time $)$
distance formula	$d=r t$
total cost	total cost $=$ (number of units) \times (price per unit)

\qquad
\qquad

Surface Area - Cone

Find the surface area of each cone. Round the answer to nearest tenth. (use $\pi=3.14$)
1)

Surface Area = \qquad
4)

Surface Area = \qquad
7)

Surface Area = \qquad
8)

Surface Area = \qquad
3)

Surface Area = \qquad
6)

Surface Area = \qquad
9)

Surface Area = \qquad
\qquad
\qquad

Answer key

Surface Area - Cone

Find the surface area of each cone. Round the answer to nearest tenth. (use $\pi=3.14$)
1)

Surface Area = \qquad
4)

5)

6)

Surface Area $=$ \qquad Surface Area $=$ \qquad Surface Area = \qquad
7)

8)

9)

$$
\text { Surface Area }=\quad 173.9 \mathrm{in}^{2}
$$

Surface Area $=$ \qquad $653.1 \mathrm{~m}^{2}$

Surface Area = \qquad $282.6 \mathrm{~cm}^{2}$
\qquad
\qquad

Find the exact volume of each cylinder.
1)

2)

3)

Volume $=$ \qquad
Volume $=$ \qquad
Volume = \qquad
4)

Volume $=$ \qquad
5)

Volume $=$ \qquad
6)

7)

Volume $=$ \qquad
8)

Volume $=$ \qquad
9)

Volume $=$ \qquad
10) The cross-section of a pipe has a width of 6 centimeter and height of 15 centimeter. Calculate the volume of the pipe.

Volume $=$ \qquad

Name: \qquad

Find the exact volume of each cylinder.
1)

Volume $=$ \qquad $396 \pi \mathrm{~m}^{3}$

Volume $=\quad 208 \pi \mathrm{in}^{3}$
\qquad
3)

Volume = \qquad $225 \pi \mathrm{~cm}^{3}$
4)

2)

5)

Volume $=$ \qquad Volume $=\underline{735 \pi \mathrm{ft}^{3}}$
6)

$$
\text { Volume }=128 \pi \mathrm{~mm}^{3}
$$

9)

Volume $=$ \qquad
10) The cross-section of a pipe has a width of 6 centimeter and height of 15 centimeter. Calculate the volume of the pipe.

Volume $=$ \qquad
\qquad
\qquad

Find the volume of each rectangular pyramid. Round the answer to two decimal places.
1)

Volume $=$ \qquad
4)

Volume $=$ \qquad

Volume $=$ \qquad

Volume $=$ \qquad
5)

Volume $=$ \qquad
8)

Volume $=$ \qquad
3)

Volume $=$ \qquad
6)

Volume $=$ \qquad
9)

Volume $=$ \qquad
\qquad
\qquad

Find the volume of each rectangular pyramid. Round the answer to two decimal places.
1)

Volume $=$ \qquad
2)

Volume $=$ \qquad
4)

Volume $=$ \qquad Volume $=$ \qquad
7)

Volume $=$ \qquad $17066.67 \mathrm{ft}^{3}$
8)

Volume $=$ \qquad

Volume $=$ \qquad
3)

Volume $=$ \qquad
6)

9)

Volume $=$ \qquad
\qquad
\qquad

Volume - Mixed Shapes

Find the exact volume of each shape.
1)

Volume $=$ \qquad
4)

Volume $=$ \qquad Volume = \qquad
7)

8)

Volume $=$ \qquad
\qquad

6)

Volume $=$ \qquad
9)

Volume $=$ \qquad
\qquad

Volume - Mixed Shapes

Find the exact volume of each shape.
1)

2)

Volume $=\quad 972 \pi \mathrm{in}^{3}$
Volume $=$ \qquad
4)

Volume $=$ \qquad Volume = \qquad Volume = \qquad
7)

8)

Volume $=$ \qquad Volume $=$ \qquad $250 \mathrm{ft}^{3}$
9)

Volume $=$ \qquad
\qquad

Find the volume of each figure. Round the answer to two decimal places. (use $\pi=3.14$)

2)

Volume $=$ \qquad
3)

Volume $=$ \qquad
5)

Volume $=$ \qquad
6)

Volume $=$ \qquad
\qquad
\qquad

Find the volume of each figure. Round the answer to two decimal places. (use $\pi=3.14$)

$$
\text { Volume }=\quad 600 \mathrm{ft}^{3}
$$

3)

Volume $=$ \qquad
5)

Volume $=$ \qquad
2)

$$
\text { Volume }=\quad 2147.76 \mathrm{~m}^{3}
$$

4)

Volume $=$ \qquad
6)

Volume $=$ \qquad

